Recently, I was talking to the CMO of a large brand who expressed his frustration with the current state of brand marketing measurement. He wants to prove that his brand marketing dollars are
having an impact, but believes that traditional tools and methodologies lack the ability to do so with the accountability his company demands.
For decades, brand marketers have relied on
survey-based methodologies to measure the effectiveness of their campaigns. Survey-based measurement can certainly be executed correctly within a margin of error, but the results are heavily
dependent upon sampling methods that pose a number of challenges:
Sample size: The survey’s sample size may be very small, or it may skew toward some segments that
aren’t reflective of your target audience. Making planning decisions based on this type of data can lead your marketing astray from achieving your objective with the right audiences.
Statistical significance: Before you can draw insights, it’s critical to make sure that the data has reached statistical significance. But achieving statistical
significance at a granular level is extremely difficult without spending an enormous amount of your budget to recruit large sample sizes for each dimension of your marketing. You may be left
with a partial story of marketing effectiveness if data at the publisher, placement, or creative levels doesn’t have enough statistical significance to be meaningful.
Timing: Since it can take weeks or months to develop the ideal sample size and statistical significance, you may find yourself waiting for meaningful data while the campaign
continues to exhaust your budget without any opportunity to make optimizations mid-flight. By the time statistically significant data becomes available, it could be too late to reallocate
budget, or the campaign could be over.
Even if a brand marketer receives meaningful survey results for one campaign, there’s no guarantee that the results will be available with the same
sample size, statistical significance, and timing for the next campaign, which makes it difficult to maintain a closed-loop brand marketing strategy, which I wrote about in an earlier post.
Today’s CMOs and brand marketers are looking for
data-driven brand measurement that they can hang their hats on. They want an approach that takes in all of the data points from their marketing plan, as opposed to a sampling of survey
responders. And they want to use that data much faster to inform optimizations throughout a campaign.
The answer lies in building a single brand engagement currency to measure impact
across multiple channels, and optimize at a tactical level. Using a currency that is based on actual user interactions with your brand provides the level of data needed to analyze impact at a
placement, keyword or creative level, and to make frequent optimizations that drive lift in brand engagement. It also enables highly accurate scenario planning so you can launch new campaigns
that are designed to achieve specific quantitative goals.
Although digital brand marketing is growing, TV still reigns king for many brand marketers. So it’s important to use the
same currency to measure the branding impact of both TV and digital (rather than using GRPs to measure TV advertising, online metrics to measure digital advertising, and surveys to measure branding
impact). Only then can you most effectively optimize your total budget across TV, search, display, mobile, etc.
CMOs and brand marketers should be excited about the future ahead of
them. The data they need is already available and waiting to be put to work, but their
marketing technology needs to add value to make it work. When the tools and methodologies align
with the data, the full potential of brand marketing is finally unlocked.