We all know creative has historically driven the advertising planning process. Media has largely taken its cues from the “big idea,” and digital advertising has played as backup band to
the main message and traditional media channels such as print and TV.
But times have been rapidly changing, marked by milestones such as digital media spend surpassing TV media spend in 2016. The days of advertising campaigns founded
primarily on big creative ideas appear to be dwindling, and data is stepping up to play more of a leading role.
A recent Forrester report written by Joe Stanhope, "AI Must Master the Basics Before It Can Transform Marketing," points to numerous
ways we can expect content and creative to be more closely tied to data strategies in order to achieve “efficiency, smarter decisions, speed, continuous performance improvement, and customer
journey optimization.”
In a conversation about the study, Stanhope said Forrester clients are asking for more ways to create content personalization, and AI tools provide a path
for doing this at scale. As the report title suggests, there are some basics to address, especially the role data strategists will need to play in setting the stage for creative executions.
The new creative palette draws from an avalanche of data ready to be exploited by AI algorithms. This unlocks a new level of information about each and every person with a social profile by
capturing “data exhaust” from their interactions and posts, revealing hints about their motivations and beliefs.
Doing the work of the insights department, which has traditionally
employed various forms of research to uncover emotional drivers and buying intent from which to target and personalize campaigns, AI algorithms can assess how people think and feel in real time.
This can obviously happen a lot faster than with traditional methods and delivers far more granular segments.
Stanhope quipped, “If you are operating AI at scale, will the insights
department primarily become a monitoring function?”
Still, his report more seriously calls for joining forces with the customer insights team when using AI to effectively manage data,
define KPIs, and assign goals.
Let me give you an example of an AI targeting strategy that produced very specific information leading to an equally specific messaging strategy:
You may have heard of the AI firm Cambridge Analytica, which by now is famous (infamous?) for its help in winning the Brexit vote and later the Trump presidential campaign (Steve Bannon sits on the
board). Using AI, the company has built a database of approximately 300 million profiles in the U.S. that include “Myers Briggs-like” personality traits.
Presumably, in the case of
the 2016 Presidential election, Trump’s team applied this data to identify Democrats who were still on the fence, and then served messages (cough, fake news, cough) meant to keep them there
(i.e., stay home on voting day.) The Trump campaign denies this, and I’m not debating its exact strategy. But I do want you to think about the significance of being able to exactly
target Democrats who hadn’t yet made a decision, as well as the process of exploiting that information. To execute, the creative brief would be born of the data strategy, versus the other way
around. In terms of the campaign’s success, I will let you be the judge.
Renee Bunnell, founder of another psychometric AI data platform called REAL, which uses character strengths
(vs personality traits) to define target audience segments, cites improved engagement rates of four to eight times better than the best previous methods used.
I don’t know about
you, but that gets my attention, and it fits with the heightened interest brand marketers are showing in increasing their personalization capabilities. It’s another example of using data
to inform creative automation, an important next frontier for delivering meaningful ROI lift.
In order to deliver on AI’s promise, most agencies will have to grapple with structure and
process, bringing data and analytics closer to creative development. There are a few new agencies, such as Born-AI, that are configuring around AI technology. Co-founder Max Fresen
(an ECD by training) says, “The great promise of AI is to unlock empathy. By understanding humans, machines can respond to our needs and wants with emotionally appropriate messages, and can earn
our trust.” Other agencies are looking to inject AI into their existing work processes by investing in leadership to evangelize and execute AI-driven strategies
Crossmedia recently
appointed Karim Sanjabi (a longstanding thought leader and digital entrepreneur from the Bay area) executive director, cognitive solutions (cool title!) to do just that.
Sanjabi’s
philosophy connotes a data-centric model: “Creative is a core part of the cognitive solutions we offer. The tools and techniques at our disposal demand a vastly different approach to data,
planning, analytics, and creative than a traditional model.” Both agency models address AI as the beginning of something big, and commit to the long game in delivering on that promise.
As Stanhope’s report professes, “AI provides the cognitive scale brands need to keep pace with escalating customer demands, the deluge of data and content, and almost
limitless customer journey permutations.”
Among other things, he urges that we “anticipate the intense content requirements for AI powered systems,” and he lays out
the first necessary steps to take in this journey. “Buy into AI for the efficiency, stay for the performance,” Stanhope suggests. Certainly a part of this will include putting
data in the driver’s seat and bringing creative along on a new ride.